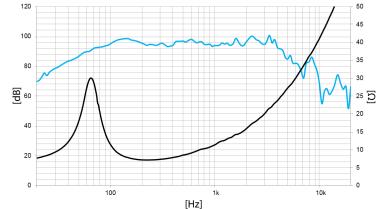


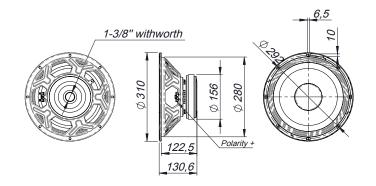
12WCX/D 8Ω


CUSTOM TRANSDUCER

TECHNICAL SPECIFICATIONS

Nominal diameter	300 mm	12 in
Rated impedance		8 Ω
Minimum impedance		7,1 Ω
Power capacity 1	T	BD W _{AES}
Program power ²		TBD W
Sensitivity	96 dB 1W /	1m @ Z _N
Frequency range	70 -	5.000 Hz
Voice coil diameter	63,5 mm	2,5 in
BI factor		13,5 N/A
Moving mass		0,052 kg
Voice coil length		17 mm
Air gap height		7 mm
X _{damage} (peak to peak)		29 mm

THIELE-SMALL PARAMETERS3


Resonant frequency, f _s	67 Hz
D.C. Voice coil resistance, R _e	5,9 Ω
Mechanical Quality Factor, Q _{ms}	3
Electrical Quality Factor, Q _{es}	0,71
Total Quality Factor, Q _{ts}	0,58
Equivalent Air Volume to C _{ms} , V _{as}	46 I
Mechanical Compliance, C _{ms}	109 μm / N
Mechanical Resistance, R _{ms}	7,36 kg / s
Efficiency, η ₀	1,9 %
Effective Surface Area, S _d	0,055 m ²
Maximum Displacement, X _{max} ⁴	7 mm
Displacement Volume, V _d	385 cm ³
Voice Coil Inductance, Le	0,96 mH

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter	310 mm	12,2 in
Bolt circle diameter	292 mm	11,5 in
Baffle cutout diameter:		
- Front mount	280 mm	11,0 in
Depth	130,6 mm	5,1 in
Net weight	4,7 kg	10,4 lb
Shipping weight	5,2 kg	11,4 lb

Notes

¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^4}$ The $\rm X_{max}$ is calculated as $\rm (L_{vc}$ - $\rm H_{ag})/2$ + $\rm (H_{ag}/3,5)$, where $\rm L_{vc}$ is the voice coil length and $\rm H_{ag}$ is the air gap height.